
Laplace’s Equation
in Spherical Coordinates

and Legendre’s Equation (I)

Legendre’s equation arises when one tries to solve Laplace’s equation in spherical coordi-
nates, much the same way in which Bessel’s equation arises when Laplace’s equation is solved
using cylindrical coordinates. In this lecture we will introduce Legendre’s equation and provide
solutions physically meaningful in form of converging series. We will delay the full treatment of
Laplace’s equation in spherical coordinates to the end of the lecture, once the tools needed to
solve it have been thoroughly introduced.

1 Power series solution of Legendre’s equation

Legendre’s equation is one of the important equations in mathematical physics. It is usually
written in the following form

(1 − x2)f
′′

(x) − 2xf
′

(x) + αf(x) = 0 (1)

where α is a real constant. Let us set ourselves to solve equation (1) using a power series expansion
in the neighborhood of x = 0, which is a regular point for the equation. We start by postulating
the following form for f(x),

f(x) =

+∞
∑

n=0

anxn (2)

Next, we need first and second derivative of expression (2). These are readily obtained as

f
′

(x) =

+∞
∑

n=1

nanxn−1 , f
′′

(x) =

+∞
∑

n=2

n(n − 1)anxn−2 (3)

(observe that the above summations runs from 1 and 2, rather than from 0). All is left to do,
now, is to replace quantities (2) and (3) into equation (1). The resulting expression yields

+∞
∑

n=2

n(n − 1)anxn−2 −
+∞
∑

n=2

n(n − 1)anxn − 2

+∞
∑

n=1

nanxn + α

+∞
∑

n=0

anxn = 0

or, by replacing n with n + 2 in the first summation,

+∞
∑

n=0

(n + 2)(n + 1)an+2x
n −

+∞
∑

n=2

n(n − 1)anxn − 2

+∞
∑

n=1

nanxn + α

+∞
∑

n=0

anxn = 0

1



In the second summation we can start counting from 0, because terms with n = 0 and n = 1 are
null. Similarly, we start counting from 0 in the third summation. This way all summations run
from 0 to +∞. Therefore we can use a single summation symbol for the whole equation:

+∞
∑

n=0

{(n + 2)(n + 1)an+2 − [n(n − 1) + 2n − α] an}xn = 0

Equating the coefficient of each power of x to zero (and rearranging the resulting expression), we
obtain, finally,

an+2 =
n(n + 1) − α

(n + 1)(n + 2)
an , n = 0, 1, 2, 3, . . . (4)

From (4) one can calculate all coefficients an, once a0 and a1 are known. More specifically, it is
quite evident that a0 will generate all coefficients with even index (a2, a4, a6, . . .), while a1 will
generate all coefficients with odd index (a3, a5, a7, . . .). For even coefficients we have:

a2 = − α

1 · 2a0

a4 = −α − 2 · 3
3 · 4 a2 = (−1)2

(α − 2 · 3)α
4!

a0

a6 = −α − 4 · 5
5 · 6 a4 = (−1)3

(α − 4 · 5)(α − 2 · 3)α
6!

a0

· · ·
· · ·

a2r = (−1)r
[α − (2r − 1)(2r − 2)][α − (2r − 3)(2r − 4)] · · ·α

(2r)!
a0 (5)

with r = 0, 1, 2, . . ..For odd coefficients, similarly,

a3 = −α − 1 · 2
2 · 3 a1

a5 = −α − 3 · 4
4 · 5 a3 = (−1)2

(α − 3 · 4)(α − 1 · 2)
5!

a1

a7 = −α − 5 · 6
6 · 7 a5 = (−1)3

(α − 5 · 6)(α − 3 · 4)(α − 1 · 2)
7!

a1

· · ·
· · ·

a2r+1 = (−1)r
[α − 2r(2r − 1)][α − (2r − 2)(2r − 3)] · · · (α − 1 · 2)

(2r + 1)!
a1 (6)

again, with r = 0, 1, 2, . . .. Given that the coefficients with even index are only dependent on a0,
and those with odd index are only dependent on a1, coefficients (5) and (6) represent, actually,
two independent solutions for Legendre’s equation (one only contains even power of x, the other
only odd powers). Let us find the radius of convergence for these two series solutions. A series
converges if the ratio of two consecutive terms converges to a number smaller than 1 for n getting
bigger and bigger. For the solution with even indices we have to compute, then, the following
limit:

R = lim
r→+∞

|a2r+2|x2r+2

|a2r|x2r
= lim

r→+∞

|α − 2r(2r + 1)|
|(2r + 2)(2r + 1)|x

2 = x2

Now, x2 < 1 when −1 < x < 1. Therefore the solution described by the series with even
coefficients converges for all values of x between -1 and +1. The same can be verified for the
series with odd coefficients. Given that in the majority of the applications of interest to a physicist
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the variable x is, in fact, a cosine, the convergence interval just found is all we need to explore
useful solutions.
To summarize, if the following functions are defined,

fE(α;x) ≡ 1 +

+∞
∑

r=1

(−1)r
[α − (2r − 1)(2r − 2)][α − (2r − 3)(2r − 4)] · · ·α

(2r)!
x2r (7)

fO(α;x) ≡ x

{

1 +
+∞
∑

r=1

(−1)r
[α − 2r(2r − 1)][α − (2r − 2)(2r − 3)] · · · (α − 2 · 1)

(2r + 1)!
x2r

}

(8)

then the general solution of Legendre’s equation, converging in the open interval (−1, 1), is:

f(x) = a0fE(α;x) + a1fO(α;x) (9)

with a0 and a1 two constants which will assume specific values for particular solutions.

EXAMPLE 1.
Find the solution of equation,

(1 − x2)y
′′ − 2xy′ − 3/2y = 0

subject to the following initial conditions,

y(0) = 1 , y
′

(0) = 0

Solution.
The equation is a Legendre’s equation with α = −3/2. Therefore its general solution is,

y(x) = a0fE(−3/2;x) + a1fO(−3/2;x)

Now, fE(−3/2; 0) = 1, while fO(−3/2; 0) = 0. And f
′

E(−3/2; 0) = 0, while f
′

O(−3/2; 0) = 1. We
will have, then, y(0) = a0 and y

′

(0) = a1. The initial conditions, thus, yield a0 = 1 and a1 = 0,
and the soulution sought for is:

y(x) = fE(−3/2;x) ≡ 1 +

+∞
∑

r=1

(−1)r
[−3/2 − (2r − 1)(2r − 2)] · · · (−3/2)

(2r)!
x2r

certainly converging for −1 < x < 1.

2 Legendre polynomials

Solution (9) converges for all values inside the interval between -1 and +1, but diverges or it is
not defined at x = ±1. This feature makes it a weak candidate for physical problems where,
most of the time, finite solutions are needed. For instance, we know that in several applications
x is a cosine, and a cosine is defined in the full interval [−1, 1], including ±1; they correspond
to values 0 and π of the angle, values for which the physical applications have, quite possibly,
regular and finite solutions. Therefore, we need to find solutions of Legendre’s equation which
are defined and converge in the full interval [−1, 1].
By looking at recurrence relation (4) we notice that when α equals a positive integer (or zero),
which can be expressed as l(l + 1) (l ≥ 0), then all coefficients an with n > l are zero. For
example, the following Legendre’s equation,

(1 − x2)f
′′

(x) − 2xf
′

(x) + 20f(x) = 0
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has α = 4(4 + 1). The recurrence formula for even indexes reads, in this case,

an+2 =
n(n + 1) − 4 · 5
(n + 1)(n + 2)

an

i.e.,

a2 =
0 · 1 − 4 · 5

1 · 2 a0 = −10a0

a4 =
2 · 3 − 4 · 5

3 · 4 a2 =

(

−7

6

)

(−10a0) =
35

3
a0

a6 =
4 · 5 − 4 · 5

5 · 6 a4 = 0 · 35

3
a0 = 0

a8 =
6 · 7 − 4 · 5

7 · 8 a6 = 0

a10 =
8 · 9 − 4 · 5

9 · 10 a8 = 0

a12 = 0

a14 = 0

· · ·
· · ·

Thus, we see that, given l = 4, an = 0 for n > 4. We could have chosen l equal to an odd integer,
and have all odd coefficients with index greater than that integer equal to zero. The point here
is that, once α is selected as an integer of the form l(l + 1), solution (9) can be turned into a
finite function for the whole interval [−1, 1] by appropriately setting a0 = 0 if l is odd, or a1 = 0
if l is even. This function is a polynomial whose properties will be studied, next.
First of all, given a specific value for l, recurrence relation (4) assumes, after a few factorizations,
the following form:

an+2 = −(l − n)(l + n + 1)

(n + 1)(n + 2)
an , n = 0, 1, 2, . . . , l (10)

Through equation (10) we are going to generate only a finite number of terms, as we are building
coefficients for a finite polynomial. Let us consider the term with n = l − 2. From (10):

al = −2(2l − 1)

l(l − 1)
al−2 ⇒ al−2 = − l(l − 1)

2(2l − 1)
al

Now, it is customary for special functions, like the polynomials we are trying to build here, to
fix all constants, so to standardize all results. The general solution will still be expressed as (9),
with two different constants. Let us, therefore, adopt the following definitions:

a0 = 1 , an =
(2n)!

2n(n!)2
, n = 1, 2, 3, . . . (11)

We will have, thus,

al−2 = − l(l − 1)

2(2l − 1)

(2l)!

2l(l!)2
= − (2l − 2)!

2l(l − 2)!(l − 1)!

Let us now consider, in (10), n = l − 4:

al−2 = − 4(2l − 3)

(l − 3)(l − 2)
al−4 ⇒ al−4 = −(l − 3)(l − 2)

4(2l − 3)
al−2

4



or, by using the previous result,

al−4 = (−1)2
(l − 3)(l − 2)

4(2l − 3)

(2l − 2)!

2l(l − 2)!(l − 1)!
= (−1)2

(2l − 4)!

2l2(l − 2)!(l − 4)!

Proceeding along similar lines, we obtain, for n = l − 6,

al−6 = (−1)3
(2l − 6)!

2l3!(l − 3)!(l − 6)!

and, in general,

al−2m = (−1)m
(2l − 2m)!

2lm!(l − m)!(l − 2m)!

Using definition (11), we have built a class of particular solutions of Legendre’s equation with
α = l(l + 1), where l is a positive or zero integer. These are called Legendre polynomials, and are
defined according to the following formula:

Pl(x) =

M
∑

m=0

(−1)m
(2l − 2m)!

2lm!(l − m)!(l − 2m)!
xl−2m (12)

where M = l/2 or M = (l − 1)/2, whichever is an integer.

EXAMPLE 2.
Write the first four Legendre polynomials, using formula (12).
Solution
l = 0.

P0(x) = 1

l = 1.
P1(x) = x

l = 2.

P2(x) =
1

2
(3x2 − 1)

l = 3.

P3(x) =
1

2
(5x3 − 3x)

A plot of the first four Legendre polynomials is shown at Figure 1. It is interesting to observe
that all polynomials pass through point (1,1). This is, in fact, due to the standardization choice
(11), according to which Pl(1) = 1, for any value of l.

EXAMPLE 3.
Find the solution to the following Legendre’s equation:

(1 − x2)y
′′ − 2xy

′

+ 12y = 0,

with y(0) = 0 and y
′

(0) = 1.
Solution
In this case α is an integer of the form l(l + 1), with l = 3. Therefore, the general solution is:

y(x) = a0fE(12;x) + BP3(x)
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Figure 1: Plot of the first four Legendre polynomials.

where a0 is the same constant used in equation (9), while B is a new constant which replaces
a1, due to the standardization chosen for Legendre polynomial P3(x). Given that fE(12; 0) = 1,
P3(0) = 0, f

′

E(12; 0) = 0, and P
′

(0) = −3/2, the initial conditions yield,

a0 = 0 , −3

2
B = 1 ⇒ B = −2

3

The solution we were looking for is, thus,

y(x) = −2

3
P3(x)

This solution is simply a polynomial, finite in the whole interval [−1, 1]. Initially the general
solution had not this property but, thanks to the initial conditions, the particular solution turned
into a finite solution. Very often solutions to a Legendre’s equation to be used in a physical
problem will be coupled to initial or boundary conditions that will cause them to become finite,
tractable solutions.

3 Legendre functions of the second kind

Legendre polynomials can be easily derived from functions fE(l(l + 1);x) and fO(l(l + 1);x),
simply multiplying them by an appropriate constant. More specifically, we can obtain Pn(x) for
even values of n using the following formula,

Pn(x) = (−1)n/2 n!

2n[(n/2)!]2
fE(n(n + 1);x) , for n even (13)

and Pn(x) for odd values of n using this other formula,

Pn(x) = (−1)(n−1)/2 n!

2n−1{[(n − 1)/2]!}2
fO(n(n + 1);x) , for n odd (14)
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Let us test, for instance, formula (14) for n = 3. We have,

P3(x) = −3!

4
fO(12;x) = −3

2
x

{

1 +

+∞
∑

r=1

(−1)r
[12 − 2r(2r − 1)][12 − (2r − 2)(2r − 3)] · · · (12 − 2)

(2r + 1)!
x2r

}

⇓

P3(x) = −3

2
x

{

1 − 12 − 2 · 1
3!

x2 +
(12 − 4 · 3)(12 − 2 · 1)

5!
x4 − (12 − 6 · 5)(12 − 4 · 3)(12 − 2 · 1)

7!
x6 + · · ·

}

⇓

P3(x) = −3

2
x

{

1 − 12 − 2 · 1
3!

x2

}

=
1

2
(5x3 − 3x),

which is the correct expression for P3(x). As it happens, an integer value 12 = 3(3+1) determined
the series truncation, and the final result was a polynomial. In order to obtain this one should
be careful to select fE for even n, and fO for odd n. If fE(n(n+1);x) was written for odd values
of n, or fO(n(n + 1);x) was written for even values of n, infinite series, rather than polynomials,
would be produced, although they would still represent functions converging in the open interval
(−1, 1). These functions are known as Legendre functions of the second kind, and are standardised
and defined as follows:

Qn(x) = (−1)n/2 [(n/2)!]22n

n!
fO(n(n + 1);x) , for n even (15)

Qn(x) = (−1)(n+1)/2 {[(n − 1)/2]!}22n−1

n!
fE(n(n + 1);x) , for n odd (16)

EXAMPLE 4.
Using formulas (15) and (16), compute Q0(x) and Q1(x).
Solution
Let us start with n = 0. Being this an even number, we will have to use formula (15),

Q0(x) = fO(0;x) = x +
x3

3
+

x5

5
+ · · ·

This series converges in the interval (−1, 1). We can, in fact, perform a Taylor expansion of
function ln[(1 + x)/(1 − x)] around x = 0, and find that,

ln

(

1 + x

1 − x

)

= 2x +
2

3
x3 +

2

5
x5 + · · ·

Therefore, Q0 can be expressed in closed form:

Q0(x) =
1

2
ln

(

1 + x

1 − x

)

(17)

To compute Q1(x) we will have to consider formula (16):

Q1(x) = −fE(2;x) = −
(

1 − x2 − x4

3
− x6

5
− · · ·

)

= x

(

x +
x3

3
+

x5

5
+ · · ·

)

− 1

Thus, also Q1 can be expressed in closed form,

Q1(x) =
1

2
x ln

(

1 + x

1 − x

)

− 1 (18)
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Figure 2: Plot of the first three Legendre functions of the second kind.

Indeed, all Legendre functions of the second kind have a closed form that can be derived using
certain recurrence formulas. We will not described them in these notes, but they can be find
easily in advanced mathematics textbooks. Plots of the first three Legendre functions of the
second kind are shown in Figure 2.

EXAMPLE 5.
Express the general solution of the equation at example 3, using Legendre polynomials and Leg-
endre functions of the second kind.
Solution
The general solution found was given by,

y(x) = a0fE(12;x) + BP3(x)

Using definition (16), with n = 3, we notice that fE(12;x) = (3/2)Q3(x). Therefore we can
re-write the above general solution as,

y(x) = AQ3(x) + BP3(x),

where A is an arbitrary constant replacing a0.

4 Rodrigues’ formula

Legendre polynomials can be computed iteratively one after the other with the aid of a formula
which makes use of repeted derivatives. This formula is known as Rodrigues’ formula, and the
aim of this section is to derive it and illustrate its use.
To fix ideas let us consider definition (12) for n even:

Pn(x) =

n/2
∑

m=0

(−1)m
(2n − 2m)!

2nm!(n − m)!(n − 2m)!
xn−2m
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If we derive x2n−2m n times, we get,

dn

dxn
x2n−2m = (2n − 2m)(2n − 2m − 1) · · · (2n − 2m − n + 1)xn−2m

i.e.
dn

dxn
x2n−2m =

(2n − 2m)!

(n − 2m)!
xn−2m

Therefore, the expression for Pn(x) can be re-written as,

Pn(x) =
1

2n

dn

dxn





n/2
∑

m=0

(−1)m

m!(n − m)!
x2n−2m





or, multiplying and dividing by n!,

Pn(x) =
1

2nn!

dn

dxn





n/2
∑

m=0

(−1)mn!

m!(n − m)!
x2n−2m





The summation used in the above expression can be extended to m = n, because it is easy to
prove that,

n
∑

m=n/2+1

dn

dxn

(−1)mn!

m!(n − m)!
x2n−2m = 0

Therefore,

Pn(x) =
1

2nn!

dn

dxn

[

n
∑

m=0

(−1)mn!

m!(n − m)!
x2n−2m

]

Now, the expression in square brackets is just the binomial expansion of (x2 − 1)n:

(x2 − 1)n =

n
∑

m=0

(

n
m

)

(x2)n−m(−1)m =

n
∑

m=0

(−1)mn!

m!(n − m)!
x2n−2m

The whole content of the square brackets can, thus, be replaced by (x2 − 1)n. Ultimately, this
leads to Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (19)

Although we have derived formula (19) for n even, the same derivation can be done for n odd.
Rodrigues’ formula is valid for any integer value of n.

EXAMPLE 6.
Using Rodrigues’ formula compute the first four Legendre polynomials.
Solution
The zeroth-order derivative of a function is simply the function itself. So,

P0(x) = (x2 − 1)0 = 1

For n = 1, 2, 3 the calculation is straightforward:

P1(x) =
1

2

d

dx
(x2 − 1) = x

P2(x) =
1

8

d2

dx2
(x2 − 1)2 =

1

2
(3x2 − 1)

P3(x) =
1

48

dn

dx3
(x2 − 1)3 =

1

2
(5x3 − 3x)
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which is the same result obtained in example 2.

EXAMPLE 7.
Using Rodrigues’ formula prove the following identity:

∫ 1

−1
[Pn(x)]2dx =

2

2n + 1
(20)

Solution
Using Rodrigues’ formula, the above integral can be re-written as,

1

22n(n!)2

∫ 1

−1

[

dn

dxn
(x2 − 1)n

] [

dn

dxn
(x2 − 1)n

]

dx

An integration by parts yields,

1

22n(n!)2

{

[

dn−1

dxn−1
(x2 − 1)n

] [

dn

dxn
(x2 − 1)n

]
∣

∣

∣

∣

1

−1

−
∫ 1

−1

[

dn−1

dxn−1
(x2 − 1)n

] [

dn+1

dxn+1
(x2 − 1)n

]

dx

}

⇓
1

22n(n!)2

{

−
∫ 1

−1

[

dn−1

dxn−1
(x2 − 1)n

] [

dn+1

dxn+1
(x2 − 1)n

]

dx

}

A second integration by parts yields,

1

22n(n!)2

{

(−1)2
∫ 1

−1

[

dn−2

dxn−2
(x2 − 1)n

] [

dn+2

dxn+2
(x2 − 1)n

]

dx

}

By carrying out integration by parts n times, eventually we will obtain,

(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

[

d2n

dx2n
(x2 − 1)n

]

dx

(x2−1)n is a polynomial, whose highest-power term is x2n. Taking its derivative 2n times simply
produces (2n)!. Therefore, we are left with the following integral to compute,

∫ 1

−1
[Pn(x)]2dx =

(−1)n(2n)!

22n(n!)2

∫ 1

−1
(x2 − 1)ndx

In Appendix A it is shown that,
∫ 1

−1
(x2 − 1)ndx =

(−1)n2n+1n!

3 · 5 · · · (2n + 1)

We have, thus,
∫ 1

−1
[Pn(x)]2dx =

(−1)n(2n)!

22n(n!)2
(−1)n2n+1n!

3 · 5 · · · (2n + 1)

=
2[(2n)(2n − 1)(2n − 2)(2n − 3) · · · 5 · 4 · 3 · 2 · 1]

2nn![(2n + 1)(2n − 1)(2n − 3) · · · 5 · 3 · 1]

=
2[(2n)(2n − 2)(2n − 4) · · · 4 · 2]

2nn!(2n + 1)

=
2[2nn(n − 1)(n − 2) · · · 2 · 1]

2nn!(2n + 1)

=
2 · 2nn!

2nn!(2n + 1)
=

2

2n + 1

which is what we wanted to prove.
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5 Orthogonality of Legendre polynomials

As it is the case for other objects of mathematical physics, Legendre polynomials can be used for
series expansion. This happens for instance to the trigonometric functions sine and cosine, found
in the Fourier series for the interval (−∞,+∞). We have also found Bessel functions Jm(αnx) to
constitute a valid set to decompose a function. In this case m is a fixed, arbitrary integer, while
{αn} is the infinite succession of Jm’s zeroes. In a similar fashion, the infinite set of Legendre
polynomials, {Pn(x)}, can be used to expand a function as a series of the type,

f(x) =
∞
∑

n=0

anPn(x)

in the interval [−1,+1]. To show how this is possible, we need first to demonstrate that Legendre
polynomials constitute an orthogonal set. In short, a set of infinite functions, {ϕ0(x), ϕ1(x), ϕ2(x), . . .},
is said to be orthogonal in a given interval (a, b) if the following property is verified:

∫ b

a
ϕn(x)ϕm(x)p(x)dx =

{

0 if n 6= m
Kn if n = m

where Kn is a constant. We are now going to show that Legendre polynomials are just such a
set of orthogonal functions, because they obey the following property:

∫ 1

−1
Pn(x)Pm(x)dx =

{

0 if n 6= m
2/(2n + 1) if n = m

(21)

(It is easily seen that, for Legendre polynomials, the orthogonality refers to the interval [−1, 1],
and the weight function is p(x) = 1).
To show property (21) is true, we have to consider that any polynomial Pn(x) obeys Legendre’s
equation, that is,

(1 − x2)P
′′

n − 2xP
′

n + n(n + 1)Pn = 0,

which can also be written as,

d

dx

[

(1 − x2)P
′

n

]

+ n(n + 1)Pn = 0

Multiplying the above expression by Pm, and integrating between -1 and +1, we obtain:

∫ 1

−1
Pm

d

dx

[

(1 − x2)P
′

n

]

dx + n(n + 1)

∫ 1

−1
PmPndx = 0

An integration by parts yields,

[

(1 − x2)P
′

nPm

]1

−1
−

∫ 1

−1
(1 − x2)P

′

nP
′

mdx + n(n + 1)

∫ 1

−1
PmPndx = 0

⇓

n(n + 1)

∫ 1

−1
PmPndx =

∫ 1

−1
(1 − x2)P

′

nP
′

mdx (22)

With an analogous series of passages, starting from the equation for Pm (with m 6= n) and
successively multiplying by Pn, we obtain:

m(m + 1)

∫ 1

−1
PnPmdx =

∫ 1

−1
(1 − x2)P

′

mP
′

ndx (23)

11



At this point it will suffice to subtract equation (23) from equation (22), to obtain this relation-
ship,

[n(n + 1) − m(m + 1)]

∫ 1

−1
Pn(x)Pm(x)dx = 0,

which is true only if
∫ 1

−1
Pn(x)Pm(x)dx = 0

This verifies the first of (21). To verify the second, we simply take m = n and, thus, have to
compute the following integral

∫ 1

−1
[Pn(x)]2dx

Indeed, this has already been done at example 7 (result (20)). The integral yields,

∫ 1

−1
[Pn(x)]2dx =

2

2n + 1

Thus, the second part of equation (21) is also true.

EXAMPLE 8.
Obtain the formula to compute the expansion coefficient for a Legendre series.
Solution
Given a function f(x), behaving sufficiently well in the interval [−1, 1] (i.e. a piecewise, continu-
ous function), its series expansion using Legendre polynomials can be written as

f(x) =

∞
∑

n=0

anPn(x) (24)

Let us multiply both sides of the above equation by Pm(x), and integrate between -1 and 1:

∫ 1

−1
f(x)Pm(x)dx =

∞
∑

n=0

an

∫ 1

−1
Pn(x)Pm(x)dx

Using the orthogonality between Pn and Pm, the only component of the infinite series to be
different from zero is the one with n = m. Thus,

∫ 1

−1
f(x)Pm(x)dx = am

2

2m + 1

This last expression can be re-written with n instead of m, because m is a dummy variable,

an =
2n + 1

2

∫ 1

−1
f(x)Pn(x)dx (25)

EXAMPLE 9.
Find Legendre series for the polynomial f(x) = 4x + 3x2 − 5x3.
Solution
It is quite obvious that any polynomial of degree n can be expressed as a linear combination
of Legendre polynomials up to the n-th degree. For instance, 1 = P0(x), x = P1(x), x2 =
(2/3)P2(x) + (1/3)P0(x), and so on. Given that the decomposition of a function according to
an orthogonal set is unique, then any polynomial of degree n is a combination of Legendre
polynomials up to the n-th one. In this case the function is a polynomial of degree 3, therefore
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it will be a combination of Legendre polynomials P0, P1, P2 and P3. To compute the coefficients
of the linear combination, formula (25) can be used four times:

a0 =
1

2

∫ 1

−1
(4x + 3x2 − 5x3)dx = 1

a1 =
3

2

∫ 1

−1
(4x + 3x2 − 5x3)xdx = 1

a2 =
5

2

∫ 1

−1
(4x + 3x2 − 5x3)

[

1

2
(3x2 − 1)

]

dx = 2

a3 =
7

2

∫ 1

−1
(4x + 3x2 − 5x3)

[

[
1

2
(5x3 − 3x)

]

dx = −2

It can be verified, as it should be, that a4 = 0, a5 = 0, and so on. The expansion we were looking
for is, therefore,

4x + 3x2 − 5x3 = P0(x) + P1(x) + 2P2(x) − 2P3(x)

6 A boundary value problem for Laplace’s equation. Steady-

state temperature inside a sphere

A sphere of radius a, made up of a homogeneous material, is centred at the origin of a reference
system. The surface of its top half is maintained at a constant temperature ξ, while the surface
of its bottom half is kept at the constant temperature of zero degrees centigrades. If we wait
long enough after the top and bottom halves are put in contact with the heating sources, the
temperature distribution inside the sphere will reach a stationary state, described by Laplace’s
equation. In mathematical terms this boundary value problem can be described by the following
set of equations,







∇2u = 0
u(a, θ, φ) = ξ if 0 ≤ θ < π/2
u(a, θ, φ) = 0 if π/2 ≤ θ ≤ π

(26)

Laplace’s equation in spherical coordintes is:

1

r2

∂

∂r

(

r2 ∂u

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂φ2
= 0

It can be solved by separation of variables. First, a factorised solution is postulated,

u(r, θ, φ) = R(r)T (θ)F (φ) (27)

Then this is replaced into the equation, yielding,

TF

r2

d

dr

(

r2 dR

dr

)

+
RF

r2 sin θ

d

dθ

(

sin θ
dT

dθ

)

+
RT

r2 sin2 θ

d2F

dφ2
= 0

Once the obtained result is divided by RTF and multiplied by r2 sin2 θ, we obtain,

sin2 θ

R

d

dr

(

r2 dR

dr

)

+
sin θ

T

d

dθ

(

sin θ
dT

dθ

)

= − 1

F

d2F

dφ2
(28)

The left-hand side of the above equation depends only on r and θ, while its right-hand side
depends only on φ. The equation can be satisfied only if both sides are equal to a constant
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which, given that φ is an angular variable, it is better to choose as a positive one, m2. From (28)
the following equation is,thus, derived for φ:

d2F

dφ2
+ m2F = 0 (29)

Its solution is readily written as,

F (φ) = k1 sin(mφ) + k2 cos(mφ)

The boundary conditions do not depend on φ. This can be realised only if m is set equal to zero.
Therefore,

F (φ) = k2 (30)

Let us now solve the rest of the equation by selecting the left-hand side of (28) and m = 0:

sin2 θ

R

d

dr

(

r2 dR

dr

)

+
sin θ

T

d

dθ

(

sin θ
dT

dθ

)

= 0

⇓
1

R

d

dr

(

r2 dR

dr

)

= − 1

T sin θ

d

dθ

(

sin θ
dT

dθ

)

(31)

Given that the left-hand side of (31) depends on r, while its right-hand side depends on θ, the
equation can be satisfied only if both members equal a constant which temporarily can be any
real number, α. Equating the right-hand side of (31) to this constant, we obtain the following
equation:

1

sin θ

d

dθ

(

sin θ
dT

dθ

)

+ αT = 0 (32)

It can be transformed into Legendre’s equation if the following variable substitution is adopted:

x ≡ cos θ

With this substitution we have d/dθ = − sin θd/dx = −
√

1 − x2d/dx (you might be arguing
that sinθ = ±

√
1 − cos θ ≡ ±

√
1 − x2; but θ varies between 0 and π, where the sine is positive,

therefore sinθ =
√

1 − x2). Equation (32) is, thus, replaced by,

1√
1 − x2

{

−
√

1 − x2
d

dx

[

−(1 − x2)
dT

dx

]}

+ αT = 0

⇓
d

dx

[

(1 − x2)
dT

dx

]

+ αT = 0

And, finally,
(1 − x2)T

′′ − 2xT
′

+ αT = 0

where prime and double prime indicate first and second derivative with respect to x. As promised,
this is the Legendre’s equation. We require finite solutions at x = ±1 (corresponding to θ = 0, π).
Therefore the constant α will have to be equal to ℓ(ℓ + 1), where ℓ is an integer. In such a case
any Legendre polynomial will be a solution of the equation,

T (θ) = cℓPℓ(cos θ), (33)
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To complete the solution of our boundary value problem let us equate the right-hand side of (31)
to α ≡ ℓ(ℓ + 1):

1

R

d

dr

(

r2 dR

dr

)

= ℓ(ℓ + 1)

⇓

r2d2R

dr2
+ 2r

dR

dr
− ℓ(ℓ + 1)R = 0 (34)

Equation (34) is a particular case of a class of differential equations known as Euler-Cauchy

equations. Without going into too much details, this equation can be solved by postulating a
solution of the form R(r) = rβ. If this form is used, equation (34) becomes,

β(β − 1) + 2β − ℓ(ℓ + 1) = 0

which has two solutions, β = ℓ and β = −(ℓ + 1). Consequently, two independent solutions
of equation (34) are 1/rℓ+1 and rℓ. The first solution is not physically acceptable, because it
becomes infinite at r = 0, inside the sphere. Thus, the solution we accept is,

R(r) = bℓr
ℓ (35)

A solution of Laplace’s equation inside the sphere is built by multiplying (30), (33) and (35):

uℓ(r, θ, φ) = bℓr
ℓcℓPℓ(cos θ)k2 ≡ hℓr

ℓPℓ(cos θ)

The general solution is, therefore,

u(r, θ, φ) =

∞
∑

ℓ=0

hℓr
ℓPℓ(cos θ) (36)

To compute coefficients hℓ, we simply use the boundary conditions (26), which can be here
reported as,

u(a, θ, φ) = f(θ) =

{

ξ if 0 ≤ θ < π/2
0 if π/2 ≤ θ ≤ π

Applying these to expression (36) yields,

∞
∑

ℓ=0

hℓa
ℓPℓ(cos θ) = f(θ)

We can, thus, compute each Legendre polynomial’s coefficient, hℓa
ℓ, using formula (25), which

here becomes,

hℓa
ℓ =

2ℓ + 1

2

∫ 1

1
f(x)Pℓ(x)dx =

2ℓ + 1

2

∫ 1

0
ξPℓ(x)dx = ξ

2ℓ + 1

2

∫ 1

0
Pℓ(x)dx

⇓

hℓ =
ξ

aℓ

2ℓ + 1

2

∫ 1

0
Pℓ(x)dx

Using tabulated expressions for the first six Legendre polynomials we have, for instance,

h0 = ξ/2

h1 = 3ξ/(4a)

h2 = 0

h3 = −7ξ/(16a3)

h4 = 0

h5 = 11ξ/(32a5)
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Figure 3: Temperature distribution in a section of the sphere, for the boundary value problem
described in the main text.

The approximated solution to boundary value problem (26) is, finally,

u(r, θ, φ) ≈ ξ

[

1

2
P0(cos θ) +

3

4

r

a
P1(cos θ) − 7

16

( r

a

)3
P3(cos θ) +

11

32

(r

a

)5
P5(cos θ)

]

(37)

This approximation is represented at Figure 3, where only a section of the sphere is shown, due
to symmetry.
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Appendix

A Derivation of
∫ 1

−1(x
2 − 1)ndx

Let us replace the integration variable x with cos θ = x. The integral becomes,

∫ 1

−1
(x2 − 1)ndx = 2(−1)n

∫ π/2

0
(sin θ)2n+1dθ

Now, if we define S(k) as
∫ π/2
0 (sin θ)kdθ, an integration by parts leads to the following recurrence

property:

S(k) =
k − 1

k
S(k − 2) (38)

Let us now apply property (38) repeatedly for k = 2n + 1:

S(2n + 1) =
2n

2n + 1
S(2n − 1)

=
(2n)(2n − 2)

(2n + 1)(2n − 1)
S(2n − 3)

= · · ·
=

(2n)(2n − 2) · · · 2
(2n + 1)(2n − 1) · · · 3S(1)

=
2nn!

3 · 5 · · · (2n + 1)

In conclusion, we have,

∫ 1

−1
(x2 − 1)ndx = 2(−1)nS(2n + 1) = 2(−1)n

2nn!

3 · 5 · · · (2n + 1)
=

(−1)n2n+1n!

3 · 5 · · · (2n + 1)

which is the result used in example 7.

17


